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ISOLATED-WORD SPEECH RECOGNITION USING MULTI-SECTION
VECTOR QUANTIZATION CODE BOOKS

I. INTRODUCTION

Vector Quantization (VQ) is a data compression principle ['.] with several

successful applications, including speech coding, '2, 3, 4] image coding -5. 6],

and speech recognition '7,8,9, 10, 11, 12, 13,14, 15, 16, 17]. In previous work on

speech recognition 8, 9, 16], we developed a method in which isolated words are

classifled by means ot the average distortion that results from encoding them

with VQ code books. In this paper, we present a generalization of that method.

The generalization, which improves recognition performance and reduces com-

putational requirements, was motivated by work of Martinez, Riviera, and Buzo

L:0].

In our previous approach 116], a VQ code book is generated for each word in

the recognition vocabulary by applying an information-theoretic, iterative clus-

tering technique :8] to a training sequence containing several repetitions of the

vocabulary word. This clustering process removes all time-sequence informa-

tion from the training sequence and represents each vocabulary word as a set of

independent spectra. An input utterance is classified by encoding it with every

code book and dlnding the code book that yields the smallest average distortion.

Because the average distortion does not depend on the sequence of input speech

frames, this approach perf-irms isolated-word recognition entirely without

time-alignment.

With just four spectra in each code book, our previous approach achieved

97.7% accuracy for speaker-dependent recognition of a twenty-word vocabulary

L -]. With eight spectra in each code book, the accuracy increased to 98.8%

L 18]. These results showed that much more can be done without tirne-sequence

information than is commonly assumed. For suitably chosen vocabularies,
Manuscript approved April 20, 1984.
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characteristic spectra contain enough information for recognition, and

information-theoretic clustering does a good job of extracting that information

from training data.

To improve recognition performance and to decrease computational corn-

plexity, we have been investigating ways of incorporating time-sequence infor-

mation into the recognition procedure. Here, we present results for a new

method that incorporates time-sequence information by means of sequences of

VQ code books that we refer to collectively as multi-section code books. A

separate multi-section code book is designed for each word in the recognition

vocabulary by dividing the words in the code book's training sequence inLo

equal-length sections and designing a standard VQ code book for each section.

Unknown words are classified by dividing them into appropriate sections, per-

forming VQ on a section by section basis, and finding the mult.-section code

book that yields the smallest average distortion. The new approach reduces to

our previous apprcach when the number of sections is reduced to one. Hence-

forth, we refer to our previous approach as the single-section case. Preliminary

results for the multi-section approach were reported in 2, :7].

VQ has also been used by others to reduce the computational and memory

requirements of existing isolated-word recognition approaches :7, .1, 13, 14, 5].

In these approaches, spectra from a single, large VQ code book are used to

replace the spectra of both input speech frames and stored reference data. Our

approach is quite different, both because we design separate code books for

each word in the recognition vocabulary, and because we avoid standard

methods of time alignment.

After explaining our speech recognition approach in Section II, we describe

the data base and experiments in Section I1. Section IV contains the results for
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speaker-independent recognition, and Section V contains results for speaker-

dependent recognition. We discuss computational considerations Ln Section V7,

and we present some general conclusions in Section VII.

I. APPROACH

In this section, we give background information and describe the multi-

section approach. We begin by describing VQ and explaining its role in our

isolated-word recognition approach. We then discuss distortion measures, linear

prediction parameters, and figures of merit.

A VectoT Quzntizatin

VQ is an information-theoretic data compression principle introduced by

Shannon in the late 1950's 719]. For a specified transmission rate, VQ's objective

is to find the set of reproduction vectors, or code book, that represents an infor-

mation source with minimum expected "distortion". The data compression is

achieved by transmitting a reproduction vector index rather than the original

source vector. In general, the selection of a perceptually meaningful distortion

measure and the construction of an optimal code book are dilicult problems.

For speech, however, good choices exist "2, 3].

Speech coding by VQ is a narrow-bandwidth speech coding technique based

on linear piedictive coding (LPC) 72, 3]. Using estimates of the sample auto-

correlation function that are measured in each frame, the shape of the speech

spectrum in each frame is encoded as the index of a prestored set of LPC

parameters that define an autoregressive model and is called a codeword. The

LPC parameters used are the inverse filter gain squared a2 and the linear

predictive coefficients at, i=l, ,M, with a0=I. The collection of possible

codewords is called a code book. Let C= C,,C 2, ,CJ be a code book of N

codewords C, each defining an autoregressive model and comprising a set of

LPC parameters. Let Sj be the autocorrelation estinates from the jth frame of
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the speech to be coded. Then the spectrum shape of the jth frame is coded by

identifying the codeword Cb that "best represents" Sj according to the

"nearest-neighbor rule"

d eSj,C) = min d 1

for some distortion measure d.

Vector quantization code books are designed to minimize the average dis-

tortion that results from encoding a long training sequence of speech frames. In

particular, if Tj. ;=/, ,L is such a training sequence, the code book C is

designed so that

L"mi dT.,C) 2)

achieves at least a local minimum. If the training sequence consists of typical

speech and it is represented with a small average distortion by the code book,

then C should encode new speech with a similarly small distortion. In practice,

code books are designed by an iterative, clustering technique. The algorithm

used here is based on the work in [18,2 ]. Put simply, the L frames of the train-

ing sequence are divided into N clusters such that all frames in the same cluster

hav. similar spectrum shapes. The N codewords are the centroids of these cius-

ters.

B. VQ Wor'd Recogn'itin

In speech coding by VQ, a single code book is designed from a long training

sequence that is representative of all speech to be encoded by the system. In

the single-section approach to isolated word recognition :8, 9, .6], we used a

separate code book for each word in the recognition vocabulary. We designed

each code book from a training sequence containing repetitions of one
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vocabulary word. For example, a code book for the word "seven" would be

designed by running the vector quantizer design algorithm on a training

sequence of several repetitions of the word "seven". To classify an unknown

word, it is first encoded using each of the code books and the average distortion

for each code book is recorded. The unknown word is then classified according

to the code book yielding the Lowest average distortion.

Our new method, based on :0], represents each vocabulary word as a

time-dependent sequence of section code books, which we call a muiti-section

code book. New words are classified by performing VQ and finding the multi-

section code book that achieves the smallest average distortion.

To be more precise, let V be the number of words in the recognition voca-

bulary, and let T, be the number of utterances in the training sequence used to

design code book Ct for the k/' vocabulary word, where k =1. , V. Also, let

F be the number of frames in the q1 utterance in the training sequence for

CA where q=l, .T, and finally, let UwM be the mth frame in the q"t training

utterance for CM where m=1, F. Then there are V multi-section code

books Ct, each comprising a sequence of VQ section code books Ctj. The section

code book Ctj is designed using n frames from each training utterance for the

k' vocabulary word. That is, CMj is designed from the frames UwM, where

In=( !) +,• * ,jn, and q=1, TM. In particular, CMI is designed from the

first n frames of each training utterance for the kth, word in the recognition

vocabulary, C, from the second n frames, etc. We call n the compression fac-

for - it is the number of frames that are spanned per section. If, for a particu-

lar training utterance q, m is greater than F, the corresponding frames UnqM

lie beyond the end of the word and are not included in the training sequence for

C4j. Finally, let C&, i=1..N 1 be codewords in section code book C., We call
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the V multi-section code books C, ; k . V a code book set.

Suppose a new utterance to be classified contains L frames, and Pj is the

set of autocorrelation estimates from the Ith frame (l=* ..... L). Now let D1 be

the average distortion resulting from coding the unknown utterance with the

code book CA,

Dk = 1 dtj (3)

where St is the number of section code books in Ct, and

d= m' Lrin d(P,, Cj,, (4)

is the total distortion from coding the jth section of the input with the j:h sec-

tion code book Cjq of C1, and where n is the compression factor. Then the utter-

ance is classified as the ru" word in the recognition vocabulary, where

D, = minDs. (5)

If desired, one can select a set of threshold values Drmj and require D, <Dam, in

(3) for a valid classification. This can improve classification reliability.

If. in the above description, all words are aligned at their beginnings, we call

the approach Left-aigned. In the left-aligned case, variations in speaking rates

often result in several sounds being included in the training sequences for indivi-

dual section code books. To reduce this effect, we also tried linearly normalizing

all training sequence and classification utterances to the same length. We call

this approach length-normalized

In the length-normalized approach, the number of sections in the input

word is always equal to the number of section code books. In the left-aligned

approach, however, the input word can have more or less sections than the code
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books: we stop encoding a word in a code book when we run out of either input

word frames or code book sections.

In the foregoing terms, the approach in "[O] corresponds to left-alignment

with n=:. For left-alig rnment with n greater than or equal to the maximum

number of frames in all the training utterances, the multi-section approach

reduces to our previous single-section approach. -8, 9, 16]

C Multi-Section Code Books

Each classification code book Ck is designed from a separate training

sequence containing repetitions of the kth word in the recognition vocabulary. A

speaker-dependent code book is made from a training sequence spoken by one

person. The resulting code books are then used to classify additional utterances

from that speaker. For speaker-independent code books, the training sequence

for each code book is spoken by several people and the code books are used to

classify additional utterances from different people.

We used three types of multi-section code books:

(a) fixed-size code books,

(b) fixed-distortion code books;

(c) unclustered code books.

The three code book types are further discussed below.

As the name implies, in a flzed-size code book the section code book size

N s specified ahead of time and the design algorithm chooses ,Vtj codewords

that minimize the average distortion resulting from encoding the training

sequence for a particular section code book. Section code book sizes are linted

for convenience to powers of 2, i.e., Nt = 2'r , where rj- is called the rate of C~q.

All section code books (and thus multi-section code books) in a axed-size code

book set have the number of code words.
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For afixe'I-distortion code book, the design algorithm increases the section

code book size until it can design a section code book that encodes the training

sequence with an average distortion that is less than or equal to a pre-spec:feed

value T. All section code books in a fixed-distortion code book set are generated

with the sane average distortion threshold and can therefore have different

sizes. Like fixed-size section code books, the size of flxed-distorton section

code book are limited to powers of 2.

The third type of code book is the unclustered code book. These are gen-

erated without the clustering algorithm, simply by making a codeword out of

each frame in the training sequence. Our motivation for considering unclustered

code books was twofold. The first was computational efficiency and convenience

- generating them is much easier than generating clustered code books. The

second was as a measure of performance. Since the clustering procedure

attempts to find spectrum shapes that are representative of the training

sequence, the effectiveness of clustering can be evaluated by comparing the

performance of clustered and unclustered code books designed from the same

training sequence.

D. Distortion Veasures

In generating code books for voice coding, two distortion measures are

effective [2, 20]. They are the Itaua'ra-Saito (dis) and gain nor-uadized It'uTta-

Saito (drC) distortion measures. For two power spectra f (li) and !(iS), the ds

distortion between them is
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d, j. n (6)

For power spectrum estimates f and f that have the autoregressive (LPC) form

,A(z) 2'

where

A~z) = a,:Z -

'k =0

and z =exp(i 1), the a4.%V dis tortion is g ive n by

where

= r ();.(o) + 2 r (n);(1I),
n=1

TI,=I
and where r (n) are the time-domain autocorrelations off (f3).

Equations (6) and (7) show that djs depends on both the spectrum shape

and the gain (o). Thus, using it in (2) to design code books results in clusters

that are sensitive both to spectrum shape and gain. Using dv, however, leads

to clusters that depend only on spectrum shape. After extensive speech recog-

rution experiments comparing the performance of these two distortion meas-

ures using single-section code books [16], we concluded that drv code books are

better for speech recognition than dzs code books, particularly when using small

code books built from short training sequences. Thus, we used d-v code books

in the work reported herein.
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For the classification distortion measure in (4), we considered three

choices: dls, dav. and the gaiin optimized 1takura-Saito (drO) distortion meas-

ure.

dco(f ,J) nn d!S(f ,AI)
A>O

Like dav, d o s sensitive to spectral shape only Properties of all three distor-

tion measures are discussed in r2.]. In our work with single-section code books

-16], we found djo to be the best choice, and we used that same choice in the

work reported herein. For LPC spectra of the form (7), dGo can be expressed as

do(f,) l n(a)-ln(a2 ). (0)

E. LPCP.,ra e ters

LPC parameters for both code book generation and utterance classification

were generated using the autocorrelation method with Hamming windowing.

Except for N, the number of points to shift between successive speech frames,

we chose analysis conditions for compatibility with the Navy's 2,4-kbs LPC-'0

system[22]: analysis window width = 130 points, filter order = 10, and pre-

emphasis=94%. When using the length-normalized approach, N was adjusted to

satisfy the normalization length requirement; however, when using the left-

aligned approach. V=180 was used as is done for the Navy's LPC-'0 system. The

LPC analysis parameters used in classifications were always chosen to match

those used in generating the code books.
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F. Figures of Merit

The error rates reported in this paper are substitution error rates. We

forced a choice for each utterance presented to the recognizer algorithm, and

we presented only utterances that contained legitimate vocabulary words.

We used two figures of merit in evaluating the experiments. The first is sim-

ply the recognition accuracy. The second attempts to quantify the extent to

which the classifications are correct or incorrect. In particular, suppose that

the input utterance is the mth word in the recognition vocabulary. For correct

classification, D, should be the smallest of the average distortions (3) - i.e.,

4D.Dm (see (5)). Define

D" = min D(

as the smallest average distortion of all code books except the co,'rect one, and

define

D" - Dm,
R D (:2)Dm,

If the classifi-,ation is correct, R>O; if the classification is incorrect, R<O. For

correct classifications, R is the fractional difference between the distortion of

the correct code book, and the distortion of the next best choice - a large value

of R means that the correct code book stands out clearly from the other

choices. For each experiment, we computed the number of errors, the average

value of R (R.), and the standard deviation of R (R,).

I11. EXPERIMENAL BACKGROUND

Our experiments were conducted using a data base that was prepared by

Texas Instruments, Inc. (TI) during a systematic test of discrete-utterance
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recognition devices :231 A data base should be used solely for either tuning or

testing a recognition algorithm. To balance the conflict between tuning and

unbiased testing, we chose the following procedure. We first tuned the algorithm

based on prior experience and on a speaker-independent, male-only parameter

study. We then tested the tuned algorithm on the female speakers in the data

base. In addition, we tested the. tuned algorithm in a speaker-dependent mode

on the entire TI data base.

Automatic endpoint detection for both training-sequence and classLfication

utterances was used in our experiments. Our endpoint-d tection algorithm is

based on ideas presented in -24, 25], and is described in .6]. Briefly, the algo-

rithm ftrst analyzes the background noise to determine its average magnitude

and then uses the results to set various thresholds that are used to find

significant "energy clumps" in the data.

In the rest of this section we describe the data base, the experimental

parameters, and the experiments.

A T1 Dta Bcse

The TI data base [23] consists of twenty words: the digits zero through nine

and the ten control words yes, no, erase, ribout, repeat, go. enter, help, stop.

and start. Eight male and eight female speakers each recorded twenty-six

repetitions of each word in the vocabulary, for a total of 8320 utterances. The

data was recorded on analog tape under tightly controlled conditions: the noise

level was low, the speech level was restricted to a =3 dB range, the acoustic

environment was unvarying, and all errors in the input words were eliminated.

After collection, the data was low pass filtered and sampled at .2,500 samples

per second. We received the data in digital form on magnetic tape. Each utter-

ance. preceded and followed by short segments of ambient noise, was contained

12



in a separate ftle. In a previous study using single-section code books 6J, we

used the data primarily at the 12,500 sampling rate. For the work reported

here, the data was down sampled to 8000 samples per second. The down sam-

pling procedure is described in .16].

B. Experimentai Pahzrame ters

In this subsection, we describe the experimental parameters associated

with code book generation and utterance classification. The code book genera-

tion parameters are as follows:

(a) number of utterances in the training sequence;

(b) energy threshold E.1 n, where E is computed by

E = 2

Here, W is the analysis window width, and z, are the time-domain sam-

ples from a 12 bit A/D converter after pre-emphasis and Hamming win-

dowing;

kc) left-alignment or length-normalized alignment;

(d) compression factor-

(e) code book type and size.

The energy threshold is used to ignore nearly-silent frames; frames with

energy below this threshold are not used in designing code books or performing

a classiication. For all the work reported here, we used E.,=250.

The parameters associated with utterance classif6cation are as follows:

(a) compression factor

13
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(b) utterance alignment;

(c) energy threshold.

For consistency these values were chosen to match those used in the code book

generation.

C List of Expemme-nts

In this subsection, we list the experiments reported in the remainder of the

paper. The following speaker-independent experiments are listed according to

the corresponding subsection of Section IV

A. Complete male-data-base study of recognition accuracy as a function of

compression factor and section code book rate;

Comparison of recognition performance using unclustered and

clustered code books when using the "best" compression factor:

Study of recognition accuracy as a function of the normalization length;

Recognition accuracy comparison using fixed-size and flxed-distort~on

code book sets;

Recognition accuracy comparison of left-aligned and length-normalized

approaches;

B. A female-only experiment using parameters that did best during the

male parameter study;

C. Classification of 4. speakers using code books designed from both male

and female speakers.

Section V. contains the results of speaker-dependent experiments. The

experiments are listed according to the corresponding subsection of Section V

14
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A. Comparison of multi-section and single-section recognition perfor-

mance on the sixteen speaker data base;

B. A rate-0 multi-section study;

C Recognition results for fixed-size code books with short training

sequences;

Recognition results for unclustered code books with short training

sequences.

IV. SPEAKER-INDEPENDENT EXPERIMENTS

In this section, we describe three sets of experiments. The first set were

parameter studies done on just the male speakers - we varied the compression

factor, section code book rate, utterance alignment, and code book design

method. Based on the results, we give guidelines for parameter selection. In the

second set of experiments, the parameters were fixed based on the results of

the first set, and speaker-independent classification experiments were done for

the female speakers. In the last set, a combined male and female recognition

experiment was done.

A Male Parameter Study

For all parameter studies, the LPC parameters are those specified in sec-

tion II.E. We considered each of the 8 male speakers in turn. For each male

speaker. we classified 520 utterances using code books designed from the first 9

utterances from each of the other 7 males. We used multiple repetitons by

speakers in the training sets because of the small number of speakers we had

available, not because we believe it to be an efficient way to train a recognizer

In the first parameter study we examined the relationships among

compression factor, section code book rate, and recognition accuracy. We used

15



a 24-frame, length-normalized approach - 2- frames was approximately the

average length of the words in the recognition vocabulary. We used fixed-size,

section code books with rates 2,3, and 4 together with compression factors

1,2,3,48, and _'. The results are plotted in Figure I. Note that each point on

the plot represents 4:60 speaker-independent classifIcations - 520

classifications per speaker for 8 speakers.

Based on Figure I. we make the following observations:

(a) at each compression factor, the error spread is less than 2% for all sec-

tion code book rates;

(b) the difference in error rates between section code book rates 2 and 3 is

generally small, but it is consistent and significant;

(c) there is no signifcant difference in error rates for section code book

rates 3 and 4;

(d) a compression factor between 3 and 6 appears best.

To gain insight into any relationship among word complexity (such as the

number of syllables or phonemes), compression factor, and error rate, we exam-

ined the number of errors as a function of compression factor for the nondigit

words. We had conjectured that simplier words like no, go, and yes would be

easier to recognize using larger compression factors, and that more complex

words like repeat, rubaut, and start would reqture smaller compression factors.

The data, however, showed no obvious correlation between word complenty,

error rate, and compression factor.

Previously 16], we performed a similar speaker-independent classiftcation

experiment on these same 8 male speakers. There we used the single-section

approach and the original 12500 samples per second data. The traning method

16



4.5 I

0= RATE 2
0ORATE 3

4- ARATE 4

3.5-
w0 0 0 0

I.--

0

Ui 2.5 A

NC

2-

1 2 3 4 6 8 12

COMPRESSION FACTOR (N)
Figure I.Relationship amonag compression factor, error rate, and section code

book rate for speaker independent recognition.
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was the same as used here: nine utterances from each of the seven speakers not

being classifted were used to build code books. The analysis conditions con-

sisted of the following: N = 250 (20 milliseconds), analysts window = 250 points,

filter order = "6, pre-emphasis = 90%, and Hamming windowing As in this study,

the autocorrelation method of LPC was used. Using rate-5, single-section code

books, an average recognition accuracy of 88% was achieved, as opposed to the

97.5% achieved by the current approach. Thus by using tue multi-section

approach, the number of distortion computations per classification has been

reduced (by a factor of 4 for rate-3 section code books), and the number of

errors has been reduced by about a factor of 4.

As stated earlier, unclustered code books are generated by making a code-

word out of each frame in the training sequence, and the effectiveness of clus-

tering can bi evaluated by comparing the performance of unclustered and

clustered code books designed from the same training sequence. We built

unclustered code books using a compression factor of 4 and the same LPC

analysis parameters as specified for the clustered code books. The result is

marked by NC in Figure 1. The degradation in recognition performance using

rate-3 clustered code books instead of unclustered code books is small - about

.5%. Since the rate-3, multi-section code books are only about "_/30 the size of

the unclustered code books and the error rates for the two are close, it is

apparent that the clustering procedure performs an effective data compression

fUnctibn.

Next we studied the effect of normalization length on recognition accuracy.

We felt that, in general, longer normalization lengths would result in higher

recognition accuracies. Doubling the normalization length, however, also dou-

bles the number of distortion computations needed to compare an input
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utterance with a code book. We were searching for the shortest normalization

length that did not significantly degrade the recognition accuracy. To study

this, we chose normalization lengths of 12, 24_, and 36. We used rate-3 section

code books, and the compression factor was adjusted in each case so that there

were 8 section code books per word. Note that for a fixed analysis window width,

increasing normalization length increases the overlap between adjacent analysis

frames.

The results, listed in Table I, show that the average recognition accuracy

increases gradually with increases in the normalization length. The question

remains, however, whether the increase is significant.

To test for statistical significance, we used the two-sample Wilcoxon rank

sum test 26]. For this test, let F(z) be the probability distribution function

describing the recognition accuracy x of a multi-section approach with a

specific set of multi-section parameters compression factor, section code book

rate, normalization length. etc.). In the normalization length study described

above, let F, (z) be the probability distribution function describing the recogni-

tion performance of one of the shorter length-normalized approachs, and let

FI(z) be the probability distribution function for an approach with a longer nor-

malization length. Also, let Ah be the mean recognition accuracy corresponding

to F,(z), and let F4'%z) have a mean A,. The null hypothesis for our test is

F(z)=F(z) for all z: thus, /4u =At. The alternative hypothesis is

F,(z)=Fx(z+A) for some positive A, or F,'z) is shifted to the left of Fl(:). This

implies p, <..

We performed the Wilcoxon test for all three length combinations: :2 vs. 24.

12 vs. 36, and 24 vs. 36. The significance levels for rejection of the null

hypothesis of equal mean recognition accuracies were .:86, .'04. and 397
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respectively. Based on the Wilcoxon test results and the average reccgrnt:on

accuracies, we believe the increase in computations in going from 12 frames to

24 frames is justified, but the increase in going to 36 frames is not justified.

Previously :6], we compared the performance of fixed-distortion and

fixed-size code books using the single-section approach. Although in that study

the fixed-size code books performed better than the fixed-distortion code books,

we felt this might not hold true when using multi-section code books. One rea-

son is that each section code book represents only a small portion of a word

instead of the whole word as in the single section approach. This restrction

might reduce the types of confusions that earlier caused fixed-distortion code

books to perform worse than fixed-size code books. The possible advantages of

fixed-distortion code books are that each fixed-distortion code book is only as

large as necessary to satisfy the distortion criterion. Thus it follows that fixed-

distortion code books might lead to the same classification performance as

fIxed-size code books but with fewer total codewords. This could lead to smaller

memory requirements and faster classification performance.

We chose T = .45 and T = .30 as distortion thresholds, and we designed

fixed-distortion code books sets using the same conditions as used in the previ-

ous flxed-size code book studies. For the T =.45 threshold, the average section

code book size was 7.35 codewords; for the T = 30 threshold, it was :5.99 code-

words.

The average recognition accuracy using the fixed-distortion code books with

T = .46 was 96.5/. With T = .30, the recognition accuracy was 96.8%. The fixed-

size, rate-3 and -4 code book sets had recognition accuracies of 97.2% and 97 57.

respectively. So. as before '16], the fixed-size code books discriminate better in

word recognition than do fixed-distortion code books.
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So far, the experiments used length-norrnaiized code books. We tested the

left-aligned approach using a compression factor of 4, a section code book rate

of 3, and, except for N (the number of points to shift between successive speech

frames), the same analysis conditions as before. In the left-aligned experiment,

N was fixed at :80. Left alignment was used both to design code books and to

classify input utterances.

The left-aligned results together with the rate-3, compression factor 4,

length-normalized results are shown in Table II The length-normalized

approach is clearly superior. This conclusion is also supported by the Wilcoxon

test: the signiftcance level is .012 for rejecting the null hypothesis of equal mean

recognition accuracies.

The foregoing results suggest the following guidelines:

(a) length normalization should be used with analysis conditions that pro-

vide frame overlap;

(b) the compression factor should correspond to roughly 20% of the nor-

malized length:

(c) fixed-size section code books of at least rate-3 should be used.

Although the speakers in these studies possessed several of the major dialects,

the speaker sample was small and homogeneous - 8 male speakers living in

Texas. Thus, the rate-3 section code books might be too small. In the next two

sections we further evaluate this issue by studying a female speaker sample and

a combined male and female speaker sample.
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B. FeTr'Le Results

Using a compression factor of 4 and 24-frame length normalization, we stu-

died speaker-independent recognition using the 8 female speakers. As in the

male study, we classified 520 utterances for each speaker using code books

designed from the first 9 utterances of each speaker not being classified. The

rate-3 and -- results are listed in Table I. The rate-- code books performed

better that the rate-3 code books, but the difference does not appear to be

significant - the Wilcoxon test yields a large significance level of 31B for reject-

ing the null hypothesis of equal average recognition accuracies.

The average recognition accuracy of 93.8% for females is significantly less

than the 97.2/ found for males. About half of the female errors, however, were

for two speakers: SAS and DFG. On examinng the data we found that most of

the errors for DFG occurred for words on which the endpoint detector had

grossly misidentified the endpoints: her voice had a breathy, nasal quality that

was unlike the other speakers. This was not the case for SAS, however There

seemed to be nothing obviously unusual about her speech, yet it was difficult to

recognize.

To see if the addition of new speakers to the training sequence would

improve the recognition performance, we recorded data from 10 additional

female speakers. The speakers were chosen arbitrarily. Each new speaker pro-

vided I utterance of each vocabulary word. The new data was down sampled to

6000 samples per second using the same procedure as used on the TI data, and

it was added to the previous training data. No analysis or experimental condi-

tions were changed. The results using the expanded training sequences are

shown in Table IV.
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The average recognution accuracy 7.ncreased to 95.'. '98.5% for Just the

digits), but more interesting, the .mprovement was restricted to the twYo hardest

speakers: SAS and DFG. Thus, adding more training data improved the recogni-

tion performance for the speakers that were poorly represented by the original

training sequence and neither degraded nor improved the results for the rest of

the speakers. Table V contains the confusion matrix for the female expernments

using the expanded 17-speaker training sequence. Each row contains the results

for classifying all utterances of one word in the recognition vocabulary: the

columns correspond to the diLfferent classification decisions. The most frequent

errors were no.--,go and stop-five. The no and go errors were generally caused

by their spectral and temporal similarities. The rest of the errors are not so

easily categorized, but they usually could be attributed to inadequacies in the

training data or to inaccurate endpoint detection.

C Combined Male and Female Resvlts

The separate results for males and females suggest that a rate-3, multi-

section code book is adequate for recognition purposes. This may not be the

case for mixed populations, however. Because general diferences in male and

female vocal tracts sizes lead to characteristic formant shifts for the same

speech sounds, larger code book sizes might be required to maintain perfor-

mance for mixed populations. We examined this issue by performing a recogni-

tion experiment on a 4 speaker subset of the TI data base (2 males: RLD and

GRD, and 2 females: SAS and ALK). We used code books designed from the

remaining 12 speakers - each speaker provided 9 utterances of each word as

training data.

The results for section code book rates 1 through 5 are shown in Table VI.

For this small speaker sample, no significant improvement resulted from a
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section code book rate greater than 3. Table 'v7 contains the ,ndividual rate-3

results for the combined male-female training data experiment and the earlier

rate-3 single-sex experiments. A large increase in recognition accuracy for SAS

offset small decreases in recognition accuracy for the rest of the speakers, and

the average recognition accuracy using the combined-sex training sequences

was about the same as that using the single-sex training sequences. The spread

in recognition accuracies, however, using the combined-sex training sequences

has been dranaticly reduced. 7he reduced spread in recognition accuracies

suggests the :2-speaker training sequences characterize the general population

better than the 7-speaker traung sequences used earlier, and it gives evidence

that increased stability of performance would result from using richer training

sequences.

V. SPEAKER-DEPENDENT EXPERIMENTS

In this section. we describe the results of speaker-dependent experiments.

In the 1arst experiment, the multi-section approach was tested on the full TI data

base. In the second, two multi-section rate-C approaches were compared, and in

the itnal experiment, the effect of short training sequences was examined. All

the experiments described in this section used the 24-frame, length-normalized

approach.

A. Muti-Sectin Results

In the speaker-independent study described in the last section. good recog-

nition performance required a section code book rate of at least 3. It seems

reasonable, however, that a smaller section code book rate might suffice for

speaker-dependent recognition. To evaluate this possibility, we performed

speaker-dependent recognition experiments using the .6 speakers in the TI data
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base For each speaker, the first 10 utterances of each word were used as a

training sequence. We used a compression factor of 4 and section code book

rates 0, 1. and 2.

Table VIII contains the results for all 16 speakers. The first 5 are male and

the last 8 are female, and the male results are slightly better than the female

results. As one would expect, the average recognntion accuracy improves ,ntth

increases in section code book rate. Using the two-sample Wilcoxon test to com-

pare the rate-0 vs. rate-:, rate-I vs. rate-2, and rate-O vs. rate-2 results, the

significance levels for rejection of the null hypotheses of equal average recogni-

tion accuracies were .:38, .:33, and 031 respectively. Based on the Wilcoxon

test results and the average recognition accuracies, we believe the use of rate-2

section code books significantly increases the recognition accuracy compared to

rates 0 and I.

The average recognition accuracy obtained with the rate-2 section code

books was 98.7%G. A confusion matrix for these results is shown in Table IX. The

most frequent errors were go -- no, stop-flve, and start-.flve. Most of the go

and no classification errors were due to their spectral and temporal similarities.

Many of the other classification errors can be attributed to time alignment prob-

lems caused by inadequacies of the endpoint detector.

To be more specific, we examined the errors made using the rate-2 section

code books: there wt:e 66 words incorrectly classified. The endpoints had been

misidentified on -2. of those 66 words. We hand labeled the endpoints on those

42 words and reclassified them in the original code books. Thirty-eight of the 42

words were now correctly identified, and the average recognition accuracy

increased to 99.57. This improvement points out the importance of accurate

endpoint detection.

25

Y J %A L



In our previous single-section work _6], we performed a similar speaker-

dependent classification experiment on the TI data base. In that work, the

.2500 samples per second data was used together with the following analysis

conditions: V = 250 points, analysis window = 250 points, analysis filter order =

16, pre-emphasis = 90%, and Hamming windowing. As in this study, we used the

autocorrelation method of LPC and the first 10 utterances of each word for each

speaker as training data. The recognition accuracy using single-section, rate-3

code books on the full bandwidth data was about the same as usirg multi-

section, rate-2 code books on the narrow bandwidth data; 98.8% and 98.7%

respectively. Based on reductions in both the analysis filter order and the sec-

tion code book rate, incorporating time-sequence information reduced the com-

putational requirements by slightly more than a factor of 3, at the expense of

doubling the memory required.

B. Rate-O Multi-Section Study

The most remarkable aspect of the above speaker-dependent results is the

high recognition accuracy of the rate-0 code books. The multi-section code

book for each word consists of only 6 codewords - one codeword per section -

and the classification of an input utterance requires only one distortin compu-

tation per input frame for each vocabulary word. Moreover, the code book gen-

eration consists simply of computing autocorrelations and averaging them,

which is also easy to do quickly. Yet, despitz these major simplifications, a

recognition accuracy of 97.8% was achieved. Considering only the digits, the

recognition accuracy was 99. 5%.

Building references by linearly normalizing the training utterances to the

same length, and then computing the average of a set of parameters for each

frame in the normalized word, is an approach that many researchers evaluated
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before the introduction of dynamic programming and whole-utterance cluster-

ing techniques. Our rate-O, compression factor 4 (ROC4) approach :s a

modification of that normalize-the-utterance and average-each-frame .XN.UAF)

approach using autocorrelations as the parameters. Because of the similarity

between the two approaches, it is reasonable to ask if our ROC- approach is any

better than the old NUAF approach.

In the terminology of this paper, the NUAF approach corresponds to using

rate-O, compression factor i (ROCI) code books. So, we designed ROC: code

books and evaluated them. Based on the speaker-independent parameter study

results, we expected the larger compression factor code books (ROCZ.) to per-

form better than the smaller compression factor code books (ROCI).

Table X contains the ROCI results along with the previous ROC4 results from

Table VIII. Each compression factor 4 result is better than or equal to the

compression factor I result except for speaker WVF, and using the Wilcoxon test

on the two samples, the significance level for rejection of the null hypothesis of

equal average recognition accuracies is .159. We believe the improved perfor-

mance using a compression factor of 4 is because of two things: the slowly vary-

ing nature of speech spectra and the freedom from strict time alignment that a

compression factor of 4. allows. Apparently, averaging the spectra in the train-

ing sequence over small sections of a word produce reference spectra that

characterize a speaker's variation in pronunciation better then averaging over a

single frame. Although the significance level for r-ejection of the null hypothesis

is somewhat large, the amount of storage for each code book is reduced and the

recognition accuracies are better Using a compression factor of 4.
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C Shart TTrining Seqyences

Many speaker-dependent isolated word recognition devices on the market

today use from ' to 3 training utterances to train the system 727]. Although our

previous results .6] suggested the inadequacy of short training sequences, we

confirmed this expectation. Using a compression factor of 4 and the first 2

utterances of each word as the training sequence, we classified the same 320

utterances as above for each of the 16 speakers. The average recognition accu-

racies were 9-.6%, 95.6%, and 95.77 for rate-0, rate-1, and rate-2 multi-section

code books respectively. This is a decrease of about 3% at each rate relative to

the results using :0-utterance training sequences (see Table VIII).

Finally, we performed a recognition experiment on 4 speakers using

utterance training sequences. We used unclustered code books to retain all the

irlormation in the training data, and we used a compression factor of 4. These

results along with the 2- and 10-utterance training sequence, rate-2 results are

shown in Table ,C. The effect of using only one training utterance is dramatic.

The average recognition accuracy for this 4 speaker subset has fallen to 90.9%.

These re-ults using short training sequences simply emphasize what is com-

monly known: there is much variability in a speaker's pronunciation of a partic-

ular word.

VI COMPUTA7IONAL AND MEMORY CONSIDERATIONS

It is interesting to compare the computational and memory requirements

of the multi-section VQ approach to those of DTW for the classification of an

unknown input utterance. As we pointed out earlier, the requirements for the

DTW approach can be substantially reduced by incorporating VQ into the DT,

procedure, but we do not consider that case here. Our intention is to compare
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the computational and memory requirements of the multi-section VQ with that

of "classical" DTV -28]. Savings obtained by tracking the average distortion

during classification to reject several of the hypotheses or using table-storage

and look-up are also not considered.

In this analysis, we consider only the length-normalized approach. Let ,M1 be

the LPC analysis filter order, VNS be the number of codewords per section code

book, n be the compression factor, and LN be the normalization length. Then

the memory required for a multi-section code book Ls

Nsc ceil[- IM+i)

real numbers, where ceil 'X] is the smallest integer greater than or equal to X.

Since the input word is normalized to LN frames, classification requires NscLNv

distortion computations per multi-section code book.

In DTW approaches, the reference template and the input utterance are

often linearly normalized to the same length L before doing DTW" 228]. High

recognition accuracies can then be achieved with aL 2 distortion computations

per reference template, where a is in the range .20 to .35 228]. Each reference

template requires L storage locations, and to achieve high recognition accura-

cies, several reference templates per vocabulary word are normally stored. For

speaker-dependent recognition. the number cf reference templates Q, is usually

one or two; for speakc--independent recognition. Q is normally about ten '29].

It follows that the ratio D of the number of distortion calculations required

by the VQ approach to the number required by the DTW approach is about

D bNscLN/aL 2Q . For fixed-size code books with ,Vsc=2R 1 , where Rsc is the sec-

tion code book rate, and for a nominal value of a .25, the ratio becomes
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D : 5 S*'LNI L I Q.

We shall assume that both normalization lengths are L = LN = 32 frames k640

milliseconds at 20 milliseconds per frame) - this is perhaps too large, but it is
conveniently a power of two. It follows that the ratio of distortion calculations

becomes

2 Rsc-3

Q

For our best speaker-dependent results - 98.7' correct using a section

code book rate Rsc=2 - (!3) shows the ratio of distortion computations to be

1/ 2Q. Since Q is usually 1 or 2 for the speaker-dependent case, this shows that

the multi-sectionVQ approach requires fewer distortion computations than DTWN.

The 98.7% speaker-dependent recognition accuracy of the multi-section

approach is comparable with that achieved by other approaches on this data

base [23]. For speaker-independent recognition, the multi-section approach

required the rate RSC=3. For this case, (13) shows the ratio of distortion com-

putations to be 1/Q. Since Q is approximately 10 for the speaker-independent

case, this shows that the multi-section approach requires an order of magnitude

fewer distortion computations than DT.

The ratio W of memory locations required by the multi-section approach to

the number required by the DTW approach is

NSC clilF4L

where the length of a DTW reference L has been assumed equal to the normaliza-

tion length LN. Using a LN- 32, a T=.2LN and substituting 2Rsc for Nsc,
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W ZRsc-2.7  (14)

Q.

Equation (.4) shows that for reasonable values of Q and sc, speaker-dependent

recognition using the multi-section approach requires about one-half the

memory that DTW requires, and for speaker-independent recognition, the multi-

section approach requires only 1/8 the memory that DTW requires.

During classification, the input speech frames provide the argument f in

(9). It follows that both the time-domain autocorrelations r~n) and the LPC gain

squared a2 must be known for each input frame, which in turn means that an

LPC analysis must be done. For the dc. distortion measure, however, the gain

enters as a constant term (ln(a2)) that contributes a constant term in the com-

putation of the average code book distortions (3). The classification can there-

fore be done without this term, so no LPC analysis of the input utterance is

required - only autocorrelations need be computed:

The software for these experiments was written in FORTRAN-77 and run on a

DEC VAXI!/750 with a floating point accelerator Starting with the autocorrela-

tions from a 63-utterance training sequence, generating the fixed-size, rate-3,

multi-section code books required about 2 minutes of execution time each.

Classification of a single utterance with these code books took about 0." second

per code book - about ten times faster than our previous approach to speaker

independent recognition [!6]. The speedup is the result of a combination of fac-

tors: the section code books are smaller than the previous single-section code

books (8 code words instead of 32 code words), the narrower bandwidth data

(4000 Hz. vs 8250 Hz.) allowed a reduction in the LPC filter order from 16"4 to

i 0tA, and autocorrelations were computed over a 18 millisecond window instead

of a 20 millisecond window. Since all the software was designed for research

purposes, specially designed programs should run considerably faster
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VII. SUMMARY AND DISCUSSION

In comparison to our previous smgie-sec-on resulLs [" '. he mnccr',orauo

of time-sequence information into the VQ recognition procedure has =nproved

recognition performance. 7or male speaker-tndependent reccg tlon, ' aver-

age recognition accuracy for the 20-word vocabuiary increased from 88% to 97%

with a factor of - reduction in computational ccrnpiexity ,or :ernale speakers,

the average speaker-independent recognition accuracy was 95% on the 20-word

vocabulary, and it was 98.5% on just the digits. For speaker-dependeat recogru-

tion, the multi- and singie-section approach performed approximately the same,

but the multi-section approach required only half the nLmber of dstort~oa com-

putations. The costs for the computational and accuracy improvements of the

multi-section approach are a slightly more complicated contro structure and

an increase in memory for code book storage.

Perhaps the most remarkable multi-section VQ result was the 97.8% '99.5/

for digits) speaker-dependent recognition accuracy for the rate-0 section code

books. Only six spectra are used to charactertze each vocabulary word.

classifcation requires only one distortion computation per input speech frame

per vocabulary word. and the code book design requires no clustering.

The memory requirements and computational complexity of the speaker-

dependent, multi-section approach are about "/2 to " ,- those of the DT,7

approach. For speaker-independent recognition. the muti-section approach

requires only about " /8 the memory and i./0 the distortion computatonm of

DTW. It follows that the multi-section approach will be particularly useful when

the computational and memory burden of mult:ple templates cannot be

afforded.
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As general conclusions about the multi-section VQ approach. we offer the

following:

(a) all utterances should be length normalized before processing;

(b) the normalization length should be as long as computational con-

straints permit (up to the maximum word length expected);

(c) the analysis conditions should provide frame overlap;

(d) for speaker-independent recognition, a section code book rate of at

least 3 is required;

(e) for speaker-dependent recognition, a section code book rate of at least

2 is required;

(f) short training sequences cannot be used;

(g) accurate endpoint detection is important.

The success of the multi-section approach is due primarily to two things.

First, VQ code books are an efficient representation of the training data. Second,

multi-section code books allow flexibility in the time alignment of an input utter-

ance with a code book, but they enforce sectional time alignment. In fact, there

is an analogy in the time alignment procedures of DTW and multi-section VQ. Nei-

ther enforces a strict sequential frame by frame comparison of the input and

references, and both find locally a best path through the reference. The analogy

quickly breaks down, but it is clear that the nonlinear time alignment allowed by

both approaches contributes to their success.

Our results are encouraging, but they were for a small, homogeneous set of

speakers. How multi-section VQ will perform on a larger, more diverse

population is an open question, which we intend to investigate.
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Our original single-section VQ approach tried to model each vocabulary

word as a discrete memoryless source. Although the results were good. this

model is, of course, naive. A better source model for an isolated word is a VMar-

kov model, and many researchers have used this idea '30, 31, 15]. Multi-section

VQ is an ad hoc way of incorporating memory. It can be viewed as a one-step

Markov model with transition probabilities that are either zero or one for moving

to the next state or section. It would be more satisfying, and we suspect more

accurate, if the states and the state representations for a word were determined

by the same criterion as that used in designing a memoryless VQ code book -

iniimizing the distortion between the training data and the representation.

Some steps in this direction have been made.

Ostendorf and Gray have developed an algorithm for designing both a

separate zero memory quantizer for each of a finite number of states and a set

of next-state functions depending only on the current state and codeword to

update the state 732]. Using this algorithm, a separate finite-state vector quan-

tizer could be designed for each vocabulary word, and an unknown input utter-

ance could be classified by encoding it in each of the finite-state vector quanti-

zation code books, just as is now done with the multi-section code books. Since

time-sequence information is implicit in the next-state function, and since a

state code book is likely to be smaller than a section code book, the recognition

accuracy should improve and the computational complexity should decrease.

Acknowledgments: We thank A. Buzo and R. Johnson for helpful discus-

sions; we thank R. M. Gray for providing some of the vector quantization

software; and we thank T. Schalk for his help in obtaining the data base.
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Table 1. Male Speaker-Independent Recognition: Length-Norrnalization Study

Length = Length = Length
r2 rames 24 Frames 36 Frames

SNo. 7 R. R , R , R,' % R, R,
lSpeaker iass. i Correct Correct Correct

TBS 520 972 .589 359 97.7 .58, .30, 97.3 .600 3"

WMF 520 94.0 645 .464 96.7 63i 396 92
RLD 520 95.6 .685 .516 95.4 653 .472 96.4 .672 482,
GRD 520 93 469 342, 95. .459 336 95.8 .475 338
Ka 520 95.8 667 .480 96.0 .652 4:-5 95.2 662 455
MsW 520 98.5 .869 .562 95.' .835 .478 98.7 822 452
REH 520 98.5 1. . 07 .575 98.9 1.030 .523 99.0 :089 5:7
RG 520 97.9 927 594 99.- B71 -87 49.8 85 450

all 4160 96.3 745 53: 97.2 715 465 975 725 467

Table I. Male Speaker-Independent Recognition: Left-Aligned vs. Length-
Normalized Code Books

No. Let Aligned Lenth Normalized
Speaker Noas Errors % Right R-, R . Errors % Right R-, R

520 34 93.5 .591 407 1-7 96.7 .639 .39A
RLD 520 21 96.0 629 398 24 95.4 .653 .472
RGL 520 14 97.3 819 .496 3 99.4 874 .487
MsW 520 22 95.8 5.7 .4071 :O 98.: .835 .478
GRD 520 25 95.2 .22 314' 22 95.8 459 '336
TBS 520 20 96.2 .584 .349 :2, 97.7 .581 .30!

KAB 520 34 93.5 1608 .429! 21 96.0 .652 .415
2RQ 20 25 952 9 57 -' 6 , 989 ' ".030 523

Sall 4160 95 95.3 641 --- _45 97.2 .715 465

Table III. Female Speaker-Independent Recognition: Section Rates 3 and 4

Speaker No. S ection Rate 3 _ Section Rate

o Class. Errors % Right R., R.. !:Errors % Right .R- R.

ALK 520. 29 94.4. 556 359 2 23 95.6 587 .407
CJ'P 520 15 .,97.1 .558 .386 13 97.5 567 .389

DG 50 56 89.2 33 .3201 51 :90.2 .358 .305
G - 20 33 93.7 705 -487 2:- 96.0 .702 .5:

HNJ 520 30 94.2 '.53 49 27 94.8 56: .A20
J*WS 520 :3 97.5 8613 .592 '5 97. .795 .566
SAS 520 73 86.0 .545 i 528 61 88.3 .561 .537
SIN 520 9 98.3 4 .3 97,3 88,3 45
all 4:60 ' 258 93.8 590 465 225 946 602 470
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Table IV. Female Speaker-Independent Recognition: :7-Speaker Training Data,
Section Rates 3 and -

SpN. Section Rate 3 Section Rate 4Speaker Class. Errors . Ri2ht R_... R Errors . Right R., ..

ALK 520 26 95.0 .553 .376 2: 96.0 565 .38;
CJF 520 :3 975 .542 .339 15 97.: 550 365
DFG 520 40 92.3 .352 .300 ';2 91.9 .348 308
GNL 520 23 95.6 .7r5 515 5 97 .7-.2 .59
HNJ 520 32 93.9 .546 .407 23 95,6 8: 56 '-:3
'WS 520 23 95.6 .803 .560 19 96.. .800 .594
SAS 520 36 93.: .569 485 47 91.0 .557 515
SiN 520" 2 977 654 398 97" 66 6
aU, 4:60 205 95.: .595 450 197 .95.3 60: 462

Table V. Confusion Matrix for Female Speaker-Independent Recognition:
Compression Factor = 4, Section Rate = 3, 17-Speaker Training Sequence

E1+ E- RUB- RE-
0 1 2 3 4 3 G 7 8 9 T ASE GO .P NO O" PEAT STOP STAR YES

0 204 13

I - 200 1a
2 2 200 a
3 203 3
4 208

S .208 4
o 207
7 1 1 203

8 4 192 4 5 2
9 31 203
RE 1 1 206

EASE 208
GO 4 1 4 158 4 3?
HEPt 20'
NO 2 2 31 2 171
RUBOUT 1 12
RE.AT 33 200
STOP 18 3 2 173 9
START 11 1 a 1 197
YE1 3 12C2

Table VI. Results Using Combined Male and Female Training Data: Compression
Factor = 4

section No.i
Rate Class. Errors %Right R.. R?6.

1 2060 192 90.8 .355 .305
2 2080 155 92.6 .407 334!
3 2080 136 93.4 429 .334

4108 31 93.7 I4.57 .3811
L 5 2080, 131 93.7 8 388'
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Table VII. Comparison of Results for Single-Sex and Combined Training Data:
Compression Factor = 4, Section Rate = 3

No. Combined-Sex Stn2le-Sex
Speaker Class. i Errors % Right R. R . Errors % Right R_. R,

RLD 520 29 94.4 .469 .344 24 95.4 .653 .472
GRD 520 38 92.7 .333 .255 22 95.8 .459 .336
SAS 520 34 93.5 .473 372) 73 86.0 545 525
,I. 520 17 929 18 -s 94. 556 1R9
ali 2080 '38 93.4 .429 334 :48 92.9 .553 443

Table VIII. Section Rate Study For Speaker-Dependent Recognition

Comp. Fact. = 4 Comp. Fact. = 4 Comp. Fact. = 4
Section Rate 0 ' Section Rate = " Section Rate 2

ISpeaker No. % R. R. R' R % Rw R
p Class. Correct Correct Correct

TBS 320 98.8 1.00 .56 f100.0 1.45 .77 100.0 '.69 .95
WMF 320 98,8 .95 46 98.8 '.26 .69 99.1 .41 76
RLD 320 97.5 .79 52 98. 1 .-5 .78 99.4 1.35 .90
GRD 320 95.8 73 .47 95.9 :06 69 96.3 1.23 .80
KAB 320 99 .78 .42 99.4 1.06 .59 99.7 1.22 .66
MSW 320 96.4 1.02 .51 988 5: .73 99.: :71 8:
REH 320 97.8 .17 .61 96.8 :76 59 99. 2.08 .03
RGL 320 100.0 '.:3 .52 000 .63 .79 -00.0 1.89 .98
CJP 320 95.9 94. .53 97.8 :.36 .74 97.8 :.60 .6
DFG 320 95.3 .52 .30 97.5 184 .47 99. -03 57
ALK 320 99.4 .9555 99.4 . .54 99.7 79 :.0:
HNJ 320 95.3 .78 .48 95.6 .20 74 96.3 ..5 82
GNL 320 97.8 1 1.24 .96 96.8 79 .29 98.8 2.:.9 .4z9
JWS 320 98.1 .98 .57 98.6 :.63 99 99.4 :.90 .1 " 3
SJN 320 99.7 106 6: 99.7 :60 86 99.7 2.03 '_09

.20 ' 3 54 969 3 7 963 5 a

an 5,20 97.8 .93' 58 98.4 :3 86 98.7 .64 1 0
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Table TX. Full Data Base Speaker-Dependent Confusion Matrix: Compression Fac-
tor = 4, Section Rate = 2

N- ER- RUB- RE-
0 1 2 3 4 7 8 g TM ASE GO hELP 4O OU7 PEA STOP STAR YLSc

0 2W 1

1 21 3 2
2

3 254 2
4 1 2w8
8 254 2
a 258
7 2 251 1 11

8 1 252 1
g 1 288

9255
ERASE 1 254
GO 240 1 3

1M 25 2
NO. 248 1
RUBOUT 250

W!AT 250

STOP a 2 246
START 2 5 2 1246
YM 2W

Table X. Compression Factor Study For Speaker-Dependent Recognition: Section
Rate = 0

Comp. Fact. = 1 Comp. Fact. =4
Section Rate 0 Section Rate 0

Speaker Ils Correct €retL

TS 320 97.8 1.37 .941 98.8 ~056
WF 320 99.1 1.17 .71 98.8 .95 46
RLD ,20 96.9 1.04 79. 97.5 .79.52
GRD 320 94.7 .97 69 95.3 .73 .47
KAB 320 99.1 :01 .69 99.7 78 42
M"-W 320 98.4 1.46 .87 98.4 1!.02 51
REH 320 97.8 1.69 1.05 97.8 1.17 61
RGL 320 99.4 1.58 .87 100.0 1.13
CJP 320 95.6 135 .85 95.9 94 .53
DFG 320 95.3 .73 ..4 95.3 52 .30
ALK 320 98.1 1.47 1.01 99.4 95 .55.
HNJ 320 94.1 1.13 85 95.3 .78 .48
GNL 320 96.9 1.91 1.67 97.8 1.24 96
JWS 320 97.2 1.51 1.07 98.1 .98 5?
SJN 320 98.8 1.67 .11 99.7 1.06 .61
SAS 320 959 _. I 0 963 , p1 , Al 54'
a. 5120 972 134 100 97.8 93 .58j
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Table M. Speaker-Dependent Training Sequence Study: Compression Factor 4

I Utterance 2 Utterance 10 Utterance
Training Seq. 11 Training Seq. Training Seq,

"_ _ (Unclustered) (Clusteredl , Clustered)

{ 'No. , R RR.a % 7 Rev R
peer IClas. Correct Correct ,Correct

320 95.0 1088 .753[ 95.9 h34-2 9001 000 .694 952

W 320 89. . 89 .80? 97.8 1: 60 684~ 99:- '-4!2 .756
L4 320 88.8 .790 .695 92.8 '.945 .719 99.4 1.353 .900

n3 90.3 893 769 2.1 e. 94 978 .02 ,6L.. 1080 90.9 .96 .765 95.0 1 :6: 802 99.- 1.5-,5, 88
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